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Introduction

This is a report of research supported by the Engineering Psychology

Programs, Office of Naval Research, conducted under sponsorship of ONR

Contract Number N00014-67-A-0181-0034, from the period of October 1, 1970

to September 30, 1971.

The purpose of the psychological research was to develop procedures

for eliciting judgments of probability and utility that coulc. be employed

efficiently in decision theoretic analyses. Decision theory is a tool

that is becoming increasingly popular in the field of business for making

decisions about such things as building a new plant or introducing a new

product. The basic approach is that a complicated decision is divided

into its component parts. These components are evaluated and then

arithmetic prescribed by decision theory is used to aggregate the evalua-

tions into a final recommendation for a decision.

This approach offers promise for naval decisions as well as business

decisions, but there is a serious stumbling block in that the evaluations

for naval decisions are typically more complicated than for business

decisions. The goal of naval decisions is not merely to maximize the

expected rate of return; many non-monetary factors are important as well.

Consequently, the evaluations which would serve as the input to a decision

theoretic analysis of naval decision must be highly subjective. It is the

goal of the research being conducted under the current contract to develop

psychological procedures for eliciting subjective inputs to decision analyses.

The inputs to a decision analysis are to two kinds; they serve to

answer the following question: "What are the stakes and what are the odds?"



The first kind of an input is called a utility. It is a number that

measures the relat ive degree of atI tract iveness of a consequence of tin

Saction. The second measure is a i)robal)ility, a number referring to the

likelihood that the consequence will result if a decision is taken.

The first section of the report describes three sets of experiments

on the problem of eliciting probability estimates; the second section

describes a simulation and two experiments on the problem of eliciting

I utility judgments; and the third section describes attempts to test

the feasibility of research on probability estimation in an operational

naval environment, on the problem of submarine surveillance.

I
I
I
I
I

!I
I
I
I
I

I -2-

I



Probability

Nearly everyone understands that a probability is the number that refers to

the likelihood of occurrence. The problem is that, with the exception of the

forecasting of precipitation probabilities by weather forecasters, people have

relatively little practice in attaching numerical estimates to their opinions

about whether or not events will occur. Consequently, a major portion of the

research conducted during the past year was aimed at finding procedures for

eliciting probability estimates. This is necessary because such numerical judg-

ments form one of the natural inputs to decision-making systems.

Validation of Probability Judgments

Research on how to elicit good judgments of probabilities presumes that

the experimenter can identify a good judgment when he sees one. For probability

judgments, researchers have used four criteria: optimality, accuracy, agreement

with relative frequency, and consistency. The most stringent criterion, optimality,

requires that the experimenter know the optimal probabilities. This is typically

accomplished in experiments by using physical processes that produce equally

likely elementary events, such as rolling fair die, to generate events. There is

currently some debate about which scale to use for measuring the discrepancy

between judged and optimal probabilities, but a log odds scale has desirable

properties and is pretty well accepted for many situations.

The second criterion o; a probability distribution, accuracy, can be measured

by scoring rules, even without knowing the corresponding optimal probabilities, if

it is possible te find out which of the alternative events turns out to be true.

For example, a weather forecaster who estimates the probability of rain has no

way of finding the optimal probability, but can find out whether or not it does
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indeed rain. A high probability of rain is good if it does rain and a low one if

it does not. Scoring rules essentially rate probability distributions as accurate

to the extent that they pile up a lot of the probability on the event that turns

out to be true. A scoring is said to be 'proper" when the expected score can

be maximized only by setting the judged probabilities equal to the corresponding

optimal probabilities, when optimal probabilities are defined, or to observed

relative frequencies, in situations in which it is possible to collect enough

observations so that relative frequencies are good estimators of probabilities.

It is therefore also true that the subjectively expected score can be maximized

only by setting the judged probabilities equal to the corresponding subjective

probabilities.

The third criterion requires that a distribution of judged probabilities

agrees with the corresponding distribution of relative frequencies. This criterion

is useful when a subject estimates probabilities of repeatable events, and the

experimenter is able to measure the relative frequencies. It has been used

extensively in experiments on learning, where there is interest in the degree to

which estimated probabilities come to match the relative frequencies. They

typically come very close indeed (Peterson & Beach, 1967). (Note that even in

frequentistic situations this criterion is different from the accuracy criterion.

The reasons why are subtle; it would lead the discussion too far afield to go

into them here.)

A set of probabilities meets the fourth criterion, consistency, if it

obeys the rules of probability theory. Optimal probabilities are consistent, but

often not vice versa. Therefore, even though there is a strong tendency for

probability judgments to be internally consistent (Beach, 1966; Peterson, Ulehla,

Miller, Bourne, & Stilson, 1965), the criterion of consistency will be studied in

the proposed research only as it relates to optimality or accuracy.
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Use of Scoring Rules to Calibrate Probability Estimators

The use of quantitative judgmental inputs to a decision analysis requires

that the person making the judgments be well-calibrated with respect to what

the quantities mean. Thus, if a person is making a probability estimate he must

have a good, intuitive appreciation of the probability or the odds scale upon

which he is estimating. If he is making a value judgment he must understand the

value scale that he is using. With respect to probabilities, research shows

that some people are well-calibrated and others are not. Research shows, for

example, across all days for which a weather forecaster has estimated, say, a

20% chance of rain, it turns out to rain nearly 20% of the time; and when he

estimates a 60% chance of rain it turns out to rain approximately 60% of the time.

This quality of calibration, however, does not hold for college students.

For example, I conducted an experiment several years ago in which each subject's

task was to estimate whether or not a weak signal was contained in a noisy

background. The subjects responded by estimating the probability that a signal

was present in the noisy background. A smooth function could be used to describe

the relation between percentage of trials containing signals and estimated

probability of signal for each subject, but that function was not the identity

line. When one subject estimated a 60% chance of signal it turned out that a

signal was present about 80% of the time and when he estimated a 40% chance of

signal, it was actually present only 20% of the time. That subject was conservative

in his judgments about how much he had learned from his observations about whether

or not a signal was contained in the noisy background. Across all trials on

which he said that he had learned enough to do a 60:40 job of separating signals

from noise, he had actually learned enough to do an 80:20 job. He had actually

learned more about whether or not a signal was contained in the noise then he

said he had learned. If such "hedging" were to occur in decision analyses of Naval
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problems, the analyses would certainly turn out to be suboptimal.

Why are expert weather forecasters better calibrated than college students?

There are probably several reasons, but one possibility is that weather fore-

casters have had considerable experience having their precipitation probabilities

evaluated with a proper scoring rule. On days that it actually turns out to rain,

j a precipitation probability of 60% receives a higher score than does a precipitation

probability of 40%. But how much better is the 60% estimate? Proper scoring rules

have been developed to answer that question. A proper scoring rule has the

property that a weather forecaster can maximize his expected score when estimating

a precipitation probability only by estimating his true subjective probability.

I That is, if a weather forecaster expects that there is a 70% chance of rain

then he will maximize his expected proper score only by estimating 70%. If a

scoring rule is not proper it may be possible to receive a higher expected score

by estimating a probability other than the true subjective probability.

Under the hypotheses that experience with a proper scoring rule was one

of the factors that led to the better calibration on the part of weather fore-

casters, we designed the following experiment. College students were presented

a long string of questions that were taken from encyclopedias, almanacs, and

general knowledge examinations. An example of such a question is: "Is there

a higher per capita income in Washington, D. C. or in the State of California?"

The subject's task was to indicate which of the two answers he thought was more

likely to be correct and then to estimate just how likely in terms of odds. For

example, a subject may say that he thinks that California has the higher per

capita income and that he estimates odds of 3:1 that he is correct.

There were two groups of subjects, experimental and control. During

Stage One, the pretest, all subjects answered fifty questions like the one above
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without receiving any kind of feedback about the right answer. Then, in Stage

Two for the experimental group, subjects answered another group of seventy-fivc

questions, and after each response they received feedback both in terms of which

answer was right and also the proper score associated with the response given.

The score was determined by the proper scoring rule designed for this experiment.

In the control group subjects in Stage Two merely received feedback about which

answer was correct; they were not informed that such a thing as a score existed.

For Stage Three, all subjects took a post-test comprised of the same questions as

the pre-test. That is, they once again gave odds estimates about questions asked

in Stage One and once again they received no feedback.

The primary thing that distinguished the experimental group from the control

group was that subjects in the experimental group received feedback that was

generated by a proper scoring rule. Thus, if the use of experience with scoring

rules serves to calibrate subjects with respect to odds estimates, then, from

Stage One to Stage Three, odds made by subjects in the experimental group should

improve more than the corresponding odds estimates made by subjects in the

control group. Any greater improvement in the experimental group than in the

control group should be attributable to recalibration by means of feedback

generated through the use of scoring rules.

The results of the experiment support the experimental hypothesis. The proper

scoring rule that was used in the training portion for the experimental group was

also used to evaluate the quality of the odds estimates for both the pre-test

given in Stage One and the post-test given in Stage Three. Of the twelve subjects

in the control group, six improved from the pretest to the post-test and the

scores for the other six became worse. This is essentially random performance,

showing no more propensity to improve than not to improve. In the experimental

-7-



group, however, 10 of the 12 subjects improved and, on the average, the degree

of improveament was rather substantial. Additional analyses of these results

continue.

Encouraged by the results of this experiment, we administered the experimental

procedure to 15 different intelligence analysts in different agencies in

Washington D.C. where probability forecasts are beginning to be used. Results

showed that the estimates for 12 of the 15 analysts improved from the pre-test

I to the post-test. Furthermore, the average amount of improvement was even more

( substantial than obtained for the college students. In addition to the quantitative

results, several of the analysts volunteered comments to the effect that their

intuitive "feelings" for the meaning of probability and odds changed as the result

of the experience. Most analysts seemed to become more conservative in their

estimates; they learned that it is costly to make estimates in the range of 50:1

without being very sure of the correct answer. On the other hand, at least one

analyst who had a reputation of being cautious in probability estimates seems

to have been making more extreme estimates since participating in the experiment.

The scoring rule seems to be useful, at least for correcting extreme miscalibration.

I We are conducting additional analyses in an attempt to understand the mechanism

i by which experience with a scoring rule improves calibration. When the analyses

are complete we will write up the results and submit them to an appropriate

1 scientific journal.

At the same time, we are beginning to develop a more streamlined version of

I the scoring rule test that can be self-administered to anyone who faces the task

of estimating probabilities or odds. It can also be taken by people who are in

a position to interpret probabilities estimated by someone else.

8
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Bayesian Procedures to Revise Probabilities

In many practical situations, diagnosis about what the eavironment is like

should precede deciaing what to do about the environment. But unaided human

intuition is subject to large and systematic biases in the process of a diagnosis.

When a person estimates probabilities about which pair of hypotheses is true,

and then revises his estimate in the light of new information, his revision is

usually conservative. The revision is too small when compared with the optimal

rule, Bayes's Theorem, for the revision of opinion.

This conservative bias obviously has important implications for any application

of decision theory in which probability estimates must be updated. The biasing

of inputs result in poor final decisions. Professor Ward Edwards at the University

of Michigan has developed a set of procedures designed to reduce the conservative

bias in updating opinion. He calls these procedures a probability information

processing (PIP) system. It is based upon the assumption that people err in

revising probability estimates because they misaggregate the impact of several

j data. A PIP system requires a person to estimate the diagnostic value of each

iniividual datum (a likelihood ratio) and then assigns to a computer the task

Sof aggregating across the individual likelihood ratios by means of Bayes's Theorem.

Several experiments have shown that the degree of conservatism can be substantially

reduced by the use of a PIP system.

The second experiment conducted during the last year of this contract was

designed to investigate alternative procedures for using a PIP system. Some of

our current on-line research with Naval officers is concerned with the problem of

ship survelliance so it is appropriate that the general task faced by subjects

in this experiment was one of trying to figure out the destination of a merchant

ship. There were two possibilities. The ship was either going to Port A, which

was relatively near and along a coastal route or the ship was going to Port B,
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Swhich was much further oway and along an open-sea route. The experimenter

displayed items of information upon which the subject was to base his judgment

about the destination of the ship. These items of information included the amount

of fuel taken on, the age of the ship in years, the size of the ship in terms of

capacity for cargo and the percentage of capacity used on this trip. These data

were related in obvious ways to the two ports and this relation was displayed to

subjects by means of frequency distributions. For example, a display contained

information about the amount of fuel that had been taken on by each of the last 100

g ships that had sailed to Port A and it also contained the same kind of information

about each of the last 100 ships that had sailed to Port B. On the average, of

course, more fuel was taken on in the past by ships that were sailing to the more

distant port.

I Each subject made judgments about the destination of 26 different ships and

g he based his estimates onthe four kinds of information presented in a counter-

balanced sequence. That is, sometimes the subject learned about the age of the

I ship first and in other conditions he learned about amount of fuel first. The

six different experimental conditions referred to six different procedures that

were used to elicit judgments that could be used to calculate odds estimates about . 4

the destination of each ship. Those conditions are described below.

1. Unaided odds estimates.--Since this experiment employed judgments about

I ship destination, it was different from tasks used in previous experiments. So the

goal of the first two conditionn was to measure the degree to which results from

which previous experiments (which typically involved abstract data generating

i processes such as the sampling of colored chips from a bag) could be generalized

to the present task. The first condition employed direct odds estimates for

which the subject simply wrote down which of the two ports he thought was the more

likely destination of the ship; then he wrote down his revision of that odds estimate

I
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after observing each of the four items of information. This is the kind of

procedure that has typically produced conservative revisions and we anticipate

that that will happen here.

2. Direct likelihood-ratio estimation.--A second condition that has been

used frequently in past research on PIP systems requires the subject to estimate

a likelihood-ratio upon observing each datum. Then after the experiment is complete

the experimenter multiplies the likelihood-ratios together, as prescribed by

Bayes's Theorem, in order to calculate the posterior odds with respect to ship

destination. If the ship is rather new the likelihood-ratio should favor the

distant, open-sea port and if the ship takes on only a small amount of fuel the

likelihood-ratio should favor the near port. Previous research had shown that

this procedure, using direct likelihood estimate as inputs to Bayes's Theorem,

substantially reduces conservatism in the revision of odds estimates. That is the

result we expect with this task.

3. Likelihood-ratio estimation with posterior odds feedback.--On-line research

that we have recently conducted with intelligence analysts suggests that the direct

estimation of likelihood-ratios as used in Condition Two will be unacceptable in

practice. The reason is that it insulates the likelihood-ratio estimator from

posterior odds. Therefore, after estimating a sequence of likelihood-ratios

the analyst does not really know whether "system opinion" favors Port A or Port B

but yet it is typically the analyst, who has specialized knowledge, who must

defend that system opinion to his superiors and to operational officers. Accord-

ingly, I doubt if the procedure of direct likelihood-ratio estimation will ever

be used in practice, even though it may serve to reduce the conservative bias.

A natural extension of direct likelihood estimation is to display the posterior

odds to the estimator. That is, each time the likelihood-ratio estimator makes an

estimate, the implied posterior odds are calculated and then displayed. At least one
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j previous experiment conducted by Ward Edwards and his associates has shown that

such posterior odds feedback cuts down on the efficiency of a PIP system in

I reducing conservatism. A serious difficulty with that experiment, however, was

f that there was no way of calculating the optima] posterior odds. It is therefore

possible that the introduction of posterior odds feedback after the estimation of

likelihood-ratios reduced the magnitude of posterior odds but not in the manner

that was suboptimAd. The current experiment will permit us to make that test. That

I is because the experimenter will control the process that generates the data about

amount of fuel taken on, age of ship, and so on.

We expect the posterior odds resulting from the procedure in Condition Three

will be less extreme than those of Condition Two, and we expect this "hedging"

to be in a suboptimal direction, but the question is sufficiently important to

I warrant an experimental answer.

4. Likelihood-ratio estimation on a logrithmic scale with consistency checks.--

A potential benefit of using a Bayesian procedure is that the availability of

individual likelihood-ratios permits the estimator to check the internal consistency

of the likelihood-ratios. For example, after observing the sequence of data

does the likelihood-ratio estimator really believe that the datum with the largest

likelihood-ratio was the most diagnostic? And since Bayes's Theorem is multi-

plicative, because posterior odds is equal to the product of the likelihood-ratio

and prior odds, the appropriate measure of the diagnostic value of a datum is equal

to the log of the likelihood-ratio. For example, if the log of the likelihood- 3
ratio for a datum is four times as great as the log of another likelihood-ratio,

the first datum is four times as diagnostic as the second; it will take exactly

four data like the second one to move the odds estimate as far as the single

first datum.

The fourth condition was designed to exploit the possibility of consistency

I
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checks. Does the procedure of requiring the likelihood-ratio estimator to

make consistency checks among the logs of his likelihood-ratio estimates

actually yield more optimal posterior odds?

These checks were made possible in the following manner. Within each

sequence of data for Condition Four, the subjects drew four vertical lines on

a logrithmic likelihood-ratio scale. After observing all four data, the like-

lihood-ratio estimator was asked to check the consistency among his estimates.

5. Odds and probability estimates on a log-odds scale.-- The fifth

experimental condition was developed by the principal investigator and Mr.Clint

Kelly while conducting on-line Bayesian experimentation with intelligence

analysts in Washington, D. C. Several events combined to indicate that t.&-

use of straight likelihood estimates would be unacceptable in practice. The first

was mentioned above; it will in general be necessary for the expert who estimates

likelihood-ratios to know what the posterior odds are in order to defend those

odds. In addition, although analysts find it reasonable to estimate likelihood-

ratios under some conditions, they find it difficult or awkward in other conditions.

For example, when the hypotheses about which the odds are being estimated have an

apparent causal effect upon the datum observed, analysts find it more reasonable

to estimate likelihood-ratios then when the reverse is true, then when the data

seem to cause the hypotheses. For example, assume that an analyst is interested in

whether or not King Heussin will remain in power for another year and the relevant

datum is that there is an uprising by the fedayeen. The datum, the uprising,

could have the ultimate effect of toppling Heussin from power and that is the kind

of situation in which analysts find it difficult to estimate likelihood-ratios.

Finally, analysts seem to find it more difficult to estimate likelihood-ratios

when the datum is the nonoccurrence of an event rather than its occurrence. It is

apparently psychologically easie- to reason through plausible chains of events
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that could result in the occurrence of an event rather than a change that could

result in a nonoccurrence. It is this kind of difficulty with Bayesian procedures

I in on- I ine research that led the development of the procedure used in Condit ionl

This procedure requires that the analyst work with a combination of odds and

likelihood-ratios. It is perhaps best understood by observing the response sheet

on the following page, a response sheet that has been used extertsively with intel-

ligence analysts. The vertical axis of this response sheet indicates the odds on

a logrithmic scale. The horizontal uxis indicates the day of the month. The

heavy line that traces a path through these coordinates is an example of how an

analyst might estimate odds comparing the likelihoods of a pair of hypotheses

as a function of events that occur on the indicated days. In this case, assume

that an analyst's odds start out on the first of the month at 2:1 in favor of

the I1l (say, that a ship is sailing to the Atlantic) rather than H2 (that it is

sailing to the Mediterranean). Then on the 3rd of the month an event occurs that

raises these odds to 4:1. On the 6th another event raises the odds to 8:1 and

on the 7th of the month a third event drops the odds back to 2:1. This example

I yields the following interpretation: datum A and datum B have equal strength in

that both are associated with likelihood-ratios of 2:1. Datum C, on the other hand,

I.is as diagnostic as the combination of A and B. As an analyst moves his odds on

I this response form he may respond both in terms of odds and likelihood-ratios.

The distance that he moves his odds as a result of a datum is a likelihood-ratio.

When he attend3 to where he ends up rather than how far he is moving he is responding

in odds. Intelligence analysts typically use both characteristics of this scale

I when responding. They attend both to how far they move as a result of the datum

i and to the resulting posterior odds.

Furthermore, after having processed several data it is possible for the analyst

I
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to modify his estimates as a result of a consistency analysis. That is, he

can examine the relative distances moved for each of several data. This scale

permits the analyst to make a consistency analysis by examining the relative

distances moved for the different data items and then adjust these movements

for inconsistencies in case he thinks that one datum was more important but

he originally moved with another datum further. If a reanalysis indicates

to him that his original posterior odds were either too high or too low, it

is possible to modify that estimate, but only by making corresponding revisions

in movements along the way.

The illustrated form served to structure the response procedure for

condition 5. The subjects used essentially the same form except that the

horizontal axis referred to the datum number within a sequence rather than to

the day of the month. Each sequence, of course, contained four data. Previous

experience already indicated that analysts find this form acceptable for use.

The purpose of the experiment was to evaluate the degree to which the use of

this form could eliminate the conservatism which results from verbal odds

estimates. A hypothesis is that condition 5 will result in less conservatism

than condition 1 because the use of this chart requires the odds estimator

to consider the impact of each data item individually. To a degree, the use

of this chart reduces some of the requirements ior intuitive aggregation inherent

in direct odds estimates as used in condition 1.

6. The log-odds chart with probabilities deleted.-- Note that the

right hand side of the chart in Figure I indicates the probability in favor

of hypothesis 1 as implied by the corresponding odds that are displayed on

the left side of the chart. However, the use of bounded probabilities as

displayed in Figure 1, may inhibit movement toward either extreme. In order

to test that hypothesis, subjects in condition 6 followed exactly the same
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procedure as did subjects in condition 5, except that the probabilities were

omitted from the response sheet for subjects in condition 6. The experimental

hypothesis is that the deletion of the probability scale in condition 6 will

lead to estimates that are more excessive than corresponding estimates in

condition 5.

Data analysis.-- Subject running is now complete for this rather complicated

experiment. A total of 40 subjects were run individually. Five subjects served

in each of conditions 1, 2, 3, and 6, and 10 subjects served in each of the

conditions 4 and 5 because those were the condition of major experimental

interest. The subjects in the first three conditions participated for one to

one and half hours, whereas subjects in conditions 4, 5, and 6 participated

for three to four hours each. Greater subject-running time was required j
for the later conditions because of two factors. First of all, more training

was required in order for subjects to understand the rationale behind the

logrithmic response scale. In addition, subjects in the later three conditions

were required to make internal consistency checks of the estimated or implied

log likelihood ratios for each sequence of four data.

Analysis of the results has now begun. The major hypotheses about relative

degree of conservatism will be tested by converting each subject's estimates

to final posterior odds for each of the 26 sequences. These posterior odds

will then be compared with optimal odds and also with corresponding posterior

odds for other conditions. The effect of the consistency c:..cks will be

analyzed by inferring log likelihood ratios for each trial and each subject, and

then correlating these log likelihood ratios with the corresponding optimal

values. We hypothesize that the process of consistency checks will generate

higher correlations, procedures to decrease conservatism will lead to higher

regression slopes.
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Probability Vs. Odds Estimates

Previous research has shown that subjects are more conservative when they

revise probability estimates than when they revise odds estimates. That research

however, used only two hypotheses, and an odds estimate, which is a ratio of

two probabilities, seems naturally suited for only two hypotheses. It was

important to learn, therefore, whether or not odds estimates will remain more

effective with more than two hypotheses. That was the goal of the experiment

to be described next.

The experiment made use of abstract stimuli; the subject's task was to

infer the proportion of red chips in an urn that contained red chips and blue

chips. The number of hypotheses were two, three and five, depending upon the

experimental condition. With two hypotheses, the proportion of red chips could

take on only two different values; with three hypotheses there were three possible

proportions; and with five hypotheses the proportion of red chips could take

on five different values. The task of the subject was to revise his estimate,

either a probabiltiy or an odds estimate, on the basis of observing the color

of chips sampled at random from the urn.

Because of large individual differences with this type of task, we used

a within-subject design in which each of the twelve subjects participated in

all three conditions. On some trials they made probability estimates and on

others they made odds estimates. Probability revisions were made by redis-

tributing 100 washers among different troughs where each trough represented

one of the hypotheses. Odds estimates were made on a logrithmic scale; each

individual estimate compared the probabilities for a pair of hypotheses.

Results.-- The results clearly demonstrated that advantage associated

with odds estimates does not decrease as the number of hypotheses increase.
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Oil thIe coltl'ra ry, ailtho I llp odd•; est imnate.- did not Show iii1.ch of :ain advainta•eat'

wit 1h two or" th reIe hyIothes s, t icy woere •uistaint ia I I y better than probalii I i t

estimates when the number of hypotheses increased to five.

I This experiment left us puzzled about why the odds estimates were not

substantially more efficient than the probability estimates with only two

hypotheses. But the experiment left no doubt about the fact that odds are

substantially less conservative than probability estimates with several hypotheses,

and this is the basic question that we had set out to answer. Our next step

gwas to incorporate conditions 5 and 6 into the Bayesian experiment described in the

preceding section in order to evaluate the relative merits of a joint probability-

odds scale vs. odds alone. As indicated, the results of that experiment are

now being analyzed.

1

!

I
I

I

I
I
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Utility

One of the inputs to a decision analysis is a probability estimate

and the other is an estimate of value or utility. The primary purpose

of the decision-making system is to permit the choice of the best course

of action, the one with the highest expected utility. Many approaches

have investigated the utility or attractiveness of the consequence of

an action. The simplest is to equate utility with dollars. Bernoulli

understood problems with this approach as early as 1738 and argued that

utility should be a function of money rather than simply equal to money.

In this way he managed to capture the attitude of a decision maker toward

risk as well as toward money. But many decisions are sufficiently complicated

so that the possible outcomes of a course of stion cannot be measured in

terms of only money and risk. Frequently, other attributes such as time,

effort, safety, and public opinion are also important. This problem has

led to a serious interest in the study of multiattribute utilities. The

basic problem is to discover the appropriate set of trade-off functions

that will collapse several dimensions of value into a single dimension.

Validation of utility estimates.--There has been much less psychological

research on eliciting utilities then on eliciting probabilities. The reason

for the lack of research on utility is that it is difficult to validate

estimates. A utility is usually considered to be a subjective quantity

that characterizes the person making the judgment. Accordingly, a judgment

of a utility is valid to the extent that it is close to the subjective

quantity that it describes. The continuing difficulty in coming up with

an independent measure of that subjective quantity has been the major

stumbling-block to empirical research.
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I I
But there are ways around this problem. Our approach so far has

been to postpone validation as long as possible. Suppose, for example,

that we are interested in two different procedures for eliciting utilityI
judgments. We wish to know which would be the best one to use in an

applied setting. So far, we have adopted the policy of comparing the

output of both procedures. If both outputs are the same, then a decision

about which procedure to use can be based upon such practical considerations

as convenience. Only when the two procedures differ with respect to

output is it important to find which of the two is better. Accordingly,

our present strategy has been to map out the kinds of situations in which

different procedures yield similar results and the situations in which

they yield different results; only when a difference exists will it be

necessary to find the independent measure of utility in order to learn

I which procedure is best.

As will be shown below, our primary emphasis so far is to compare

procedures that decompose the utility problem into a dimensional analysis3 with procedures that require the subject to aggregate across the dimensions

intuitively. We have been finding a surprising degree of agreement between

the output of the two procedures.

When we finally get to the stage of validation, we plan to use the

concept of an organizational utility. The utility need not be restricted

to the person making the judgment. In applications of decision-making

systems, it is often the case that decisions should be made in such a way

I that they maximize the expected utility accruing to an organization, rather

i than the expected utility accruing to any individual within the organization.

1 -20-
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This conception of a utility as a property of the organization makes it

external to the person estimating it, and therefore opens the path to

validation. The experimental procedure will be to create an imaginary

organization with an externally specified multidimensional value system

to train subjects about that value system, and then to invite the subjects

to estimate utilities for multidimensional stimuli. The composite utility

estimates can then be evaluated by comparing them with corresponding values

for the organization.

Robustness of a Linear Model--A Simulation

A weighted linear average is the approach most frequently proposed

for decomposing multidimensional utilities. With this approach, values

j along each dimension are multiplied by the relative weight of the dimension

and then the products are added for a compositive utility. This approach

requires the estimation only of weights for dimensions, not the utility

functions. This simple linear model may not mirror the corresponding value

system, but linear models frequently can account for much of the variance

in systems that are largely non-linear. For example, Yntema and Torgerson

in 1961 showed that the additive model could account for about 94% of

the variance in a system with a non-additive, multiplicative combination

i rule.
Before completing the design of any experiment on the machine

aggregation of utilities, however, we conducted further investigation

of the degree to which different kinds of non-linear systems can be

described by a linear model. In order to make this test we created

four different kinds of two-dimensional value systems. One was linear

and additive; so the linear additive model fit perfectly. A second
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was linear and multiplicative; it was similar to the one used by

Yntema and Torgerson. The third was non-linear but additive and the

fourth was non-linear and multiplicative.

With each type of value system, we used two variables, each of

which took on twenty values, and then measured the linear, multiple

correlation for the set of all four hundred possible pairs of these two

variables. The square of the multiple correlation denotes proportion

of the variance that can be explained by the linear, additive model.

For the two cases with non-linear value systems, the relations

jbetween value and the underlying dimension were all monotonic. They

included logrithmic exponential, and power functions (of the S-curved

type). In each case we started with functions that were nearly linear

and progressed toward functions that were highly non-linear.

Table 1 shows the results of this analysis. The columns refer

to the four different forms of value systems, and rows refer to the degree

Table 1

Goodness-of-fit between linear additive models
(measured by multiple R2 ) and various value

systems for the two variable case

Type of Data Generator

Case I. Linear- 2. Linear- 3. Nonlinear 4. Nonlinear
Number Additive Multiplicative Additive Multiplicative

.r 1. 1.0 .87 .93 .80

o 2. 1.0 .92 .88 .80

3. 1.0 .89 .65 .52

S4. 1.0 .95 .67 .64

u 5. 1.0 .97 .19 .07
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of non-linearity for the non-linear systems. The first row is the most

linear and the fifth row is the least linear. These results indicate,

of course, that the linear, additive model accounts for all of the

variance in the linear additive system. Furthermore, replicating

the results of Yntema and Torgerson, the linear additive model accounts

for nearly all of the variance in the linear, multiplicative system as

f shown in column two. It accounts for about 90% of the variance, on the

average. But column three, showing the results of a non-linnar, additive

system, indicates that the amount of variance accounted for by the linear-

additive model deteriorates markedly when the component value functions

become nonlinear. Progressing from the first to the fifth row, the amount

of the variance accounted for drops from 93% to 19%. Column four shows

the same result. Predictability decreases markedly as the component value

functions become nonlinear.

The implication of this analysis is simple and important. The linear,

additive combination rule can be applied successfully to a value system only

when the component value functions are highly linear. It makes little

difference whether the combination rule is additive or multiplicative, but

it makes a great deal of difference whether the component functions are

linear or nonlinear.

This result is surprising in light of the degree to which the

linear, additive model has been advertised as robust; and it was strong

enough to deter us from using the linear additive approach for decomposing

utility judgments in the experiments to be described below.
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Experiment Decomposing Multidimensional UtilitiesThe purpose of this first laboratory experiment was to elicit

utilities for multidimensional stimuli by using two different approaches -

wholistic and decomposition - and then measure the agreement in .esulting

j utilities from the two different procedui'es. To the degree that the

outputs are alike, there is no need to worry about which approach is better.

For the wholistic approach, subjects estimated the utility of a stimulus

by a single number; for the decomposition approach, he estimated utility

I functions and weights for the component dimensions.

The purpose of the experiment required familiar stimuli with many

value dimensions. After considering several kinds of stimuli, compact

cars were chosen. The subject's task was to judge the relative utility of

different cars. These cars varied along several dimensions, such as top

speed in terms of miles per hour, economy as measured by miles per gallon,

I comfort as rated by expert judges, breaking performance, judged handling

performance, and so on.

Two conditions differed in the amount of aggregation required. One

condition used compact cars that differed only in three dimensions, whereas

I the condition requiring more aggregation used compact cars that differed

g in nine dimensions. The assumption was that any difference between the two

procedures should increase with the amount of aggregation required.

The experiment employed three different response modes. The first

two involved only direct estimation; a dollar scale in one case and a value

I scale ranging from 0 to 100 in the other. Thus, in the first condition

i the subject evaluated each car in terms of dollars (presumably a dimension

with which he was familiar) and in the second case he evaluated the relative

I
-24-

I



values of the displayed compact cars on a 0 to 100 scale. A lottery was used

for the third response mode because of an increasing interest in the concept

of additive utilities. For example, would a subject gamble with a 50-50

chance of winning the most attractive car rather than the least attractive

car; or would he prefer having a moderately attractive car for sure?

These, then, are the components of a three-dimensional factorial

design: (1) decomposed vs. wholistic judgments; (2) 3 attributes vs. 9

attributes; and (3) the response modes of dollars, rating scales, and

lotteries.

Result

Table 2 presents the correlational analysis of the results of the

experiment. It displays correlations between the additive decomposed utility

Table 2

Correlations between decomposed and
wholistic utility judgments

1. Three Dimensions S#l S#2 S#3 S#4 S#5 Median

a. Rating Scales .99 .92 .95 .96 .94 .95

b. Dollars 1.00 .92 .97 .92 .92 .92

c. BRLTs .91 .94 .94 .93 .93 .93

2. Nine Dimensions

a. Rating Scales .97 .96 .93 .91 .86 .93

b. Dollars .98 .89 .97 1.00 .91 .97

c. BRLTs .82 .85 .89 .84 .92 .85
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models with the wholistic utility models. If the two approaches yield

essentially the same utility functions, then the correlations should be

about 1.0. Ir all cases the correlations are high; they are systematically

below 90 in only one of the six conditions--when a lottery response mode

j was used with nine dimensions.

Table 3 presents a similar pattern of results. It displays differences

between wholistic and intuitive approaches rather than a correlation between

the two. The entries in Table 3 are mean squared differences between the

Table 3

Mean squared difference between decomposed
and wholistic utility judgments - all scores

normalized from 0 - 100.

1. Three Dimensions S#1 S#2 S#3 S#4 S#5 Median

a. Rating scales 39 143 41 86 128 91

b. Dollars 3 234 73 204 151 151

c. BRLTs 272 306 119 155 183 183

S2. Nine Dimensions

a. Rating scales 45 103 127 216 257 127

b. Dollars 32 159 60 6 129 60

c. BRLTs 697 345 204 400 151 345

decomposed utility judgments and the wholistic utility judgments. All scales

were normalized on a 0 to 100 scale to make results comparable throughout.

Once again, the poorest performance resulted from the use of lotteries with
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nine dimensions; next poorest from lotteries with three dimensioils.

Taken together, these results suggest that there is a high correlation

between decomposed and wholistic approaches. The absolute disagreement between

the two approaches is greatest when the lottery response mode is used. Our

first impression was that the use of a lottery was less efficient because

of the greater complexity of the response. Additional reflection, however,

suggested an alternative explanation. The direct estimation procedures

resulted essentially in riskless utility functions, because they were

derived from situations in which the subject assumed for sure that he would

receive the stimulus car. The lottery procedure, on the other hand, generated

utility functions that incorporated the judges' attitude toward risk, because

there was uncertainty about whether or not the imaginary car would be recieved.

Therefore, in additon to the greater natural complexity of the lottery task,

there was also more to aggregate--attitude toward risk as well as the utility

of dimensions along which the cars differed.

This result has prompted us to reconsider the entire theoretical

approach to aggregating multidimensional utilities by means of an additive

model. In many real world situations to which decision analysis will be

employed there is uncertainty about whether or not the objects whose

utilities are estimated will be received. In such a case, it is important

to incorporate the decision-makers attitude toward risk as well as his attitude

toward the values of each of the value dimensions. But that does not imply

that the risk attitude must be tapped when measuring each of the value

dimensions. An alternative procedure is to use one of the direct estimation

procedures, such as rating scales or dollars, in order to collapse the set

of value dimensions into a single dimension. Then, once that simplification
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has been achieved, it is possible to find a single utility function which

incorporates attitude toward risk on that single dimension, using traditional

procedures for eliciting "utility for money" functions. We will propose

additional research aimed at disentangling some of these ideas in the near

future.

Field Research on Multi Dimensional Utilities

The field research that was conducted in parallel with laboratory

research on multidimensional utilities is now complete. It forms Mr.

Michael O'Connor's PhD dissertation, and the final draft is now being

prepared. The purpose of this field research was to evaluate the degree

to which procedures developed in the laboratory would work in the real

world. Whereas laboratory research typically uses college students as

subjects, and the tasks are relatively abstract, it is important to learn

the degree to which these same procedures will be applicable when used with

professional people who have a deep understanding of the problem on which

the analysis is being applied.

This field work involved the construction of a water quality index.

The construction of such an index is a task that is ideally suited for

using decomposition procedures designed to cope with multidimensional utilities.

The problem is that water quality is currently evaluated by gathering samples

and measuring amounts of such polluting variables as fecal coliforms, phosphates,

and so on. The problem is that there is no physical model that describes the

trade-off functions between these dimensions. How much of an increase in

fecal coliforms is required to exactly offset some specified decrease in

suspended solids? Assuming that the less polluted water has more utility,

Mr. O'Connor set about the task of finding these trade-off functions by

using procedures of multi-attribute utility.
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Mr. O'Connor made field trips to several different water quality

engineers for the purpose of eliciting judgments of utility functions. The

first roblem was to select a set of criteria to be included in the index.

Almost immediately this posed a serious problem. What was desired was an

overall measure of quality, but it became apparent very quickly that a very

relevant question was utility for whom, or for what purpose. For example,

consider the attribute of water temperature. If water is to be used for

bathing, then a higher temperature is generally considered a good thing,

but if it is to be used for industrial cooling then a higher temperature

is a bad thing. Therefore, before constructing the quality index, it

was decided to measure quality for two quite different purposes: for

public water supply and for fish and wild life. One purpose of selecting

two very different purposes of the utility function was to learn the degree

to which the specific purpose was important in determining the function.

Then a list of dimensions or attributes was selected for each of the

two functions by eliciting judgments from water quality engineers about

which dimensions they felt were most important for each of the two functions.

After settling upon the lists of dimensions, each engineer generated utility

functions in the following way: for each attribute, he first drew a function

describing the manner in which quality of water changed as the amount of the

attribute increased. These functions were usually monotonic, but typically

curvilinear. In a few instances they were nonmonotonic; the function increased

until the concentration of the attribute was at an optimum, and then it

decreased as the attribute exceeded that optimum. After estimating a quality
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function for each attribute, the engineers then estimated relative weights.

They did this by assigning a weight of 100 to the attribute considered most

important, assumed a weight of 0 for an irrelevant, completely unimportant

attribute, and then estimated intermediate weights for all of the other

attributes.

These inputs were then sufficent to construct a multidimensional

utility function for each of the water quality engineers. The functions

were, of course, different, and so a modified delphi procedure was used

to resolve the differences. Reasonably good consensus was achieved.by

the process.

A final index has been achieved for each of the two purposes: for

public water and for fish and wild life. It was evaluated in two ways.

First, the 11 participating water quality engineers agreed on the face

validity of the index. Then several different samples of water were

rated by the index. It turned out that even when the engineers differed 4
with respect to their final utility weights or utility functions, the

resulting correlations between engineers across water samples remained

high. However, there was a much lower correlation between the two

indices. These results indicate that small differences among the judges

are not critical, but that it is important to determine exactly what the

utility function is to be used for before generating the function. General

purpose utility functions may be misleading.
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Submarine Surveillance

Although it was not possible to field test the laboratory research on

multidimensional utilities in a Naval setting, this was possible for research

on the estimation of probabilities. Toward the end of the current contract

year, on-line research was begun on the problem of submarine surveillance. This

research was conducted with Naval intelligence officers in OP-942U (CNO USW

Flag-plot) who are responsible for the surveillance of Soviet submarines. The

research was conducted by Dr. Cameron Peterson and Mr. Clint W. Kelly; it was

supported in part by the IBM Corporation and in part by this contract.

Procedures developed in the laboratory research described above were field

tested on the problem of submarine surveillance. First, the scoring rule test

was administered to the intelligence officers for purposes of calibration. Then

we employed several different approaches to decomposition intended to improve

the forecasts. The following example is an actual case study that is described

here in hypothetical terms. It illustrates several of the decomposition

procedures that have been used in other cases. In each instance, the numbers

are those that were estimated by Naval intelligence officers, but some of

the substantive portions of the case have been modified or disguised for

purposes of security.

The problem is as follows: a submarine has been sighted leaving the

Mediterranean Sea. The analysts were attempting to infer whether or not it was

a nuclear submarine; was it an SSN or an SS? The following example illustrates

several procedures used for estimating this probability.

Consider the two hypotheses: the first hypothesis, (HI), is that it is

an SSN and the second hypothesis, (H2 ), is that it is an SS. Some

historical data are relevant to this question. Six siiiiar submarines
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I
have been observed previously; five were SSNs and one was an SS. The task

is to add that historical information to the analyst's theoretical knowledge in

order to arrive at a probability estimate about this particular submarine. This

estimate was achieved through the use of second-order beta probabilities and

is illustrated in Figure 1. The top graph refers to the percentage of SSNs

"PRIORS P I)/P(H2) '!

I I I
0 01 0.6 0.6 OS•, o " 1. 30d 0.961

13:1 0.790IS

f r o . . , ,0.500

0'* 0.2 OA OA 40u's

- Figure 1 Figure 2

among all submarines that might be sent out. This is represented by P(H 1 )

and is the horizontal axis of the top graph. The horizontal function is a

rectangular probability distribution estimated by an intelligence analyst. This

implies that, based upon theoretical knowledge and ignoring the historical

freqiencies, he expects that all proportions of SSNs are equally likely. It is
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just as likely that they would send 151 ;is 40% as 80% SSNs. It is possible,

through the use of beta functions, to combine this rectangular prior probabiilit>'

distribution with the historical frequency information in order to obtain a

posterior probability distribution. The two parameters of the prior distribution,

r-l and s=l, are simply added to the relative frequencies in order to arrive

at the appropriate parameters for the posterior probability distribution: r=6

and s=2. This posterior probability distribution is displayed in the bottom portion

of Figure 1. It is a probability distribution over the proportion of SSNs.

The mean or expectation of this probability distribution is .75 and so that

is the number we selected as the prior probability that this particular sub-

marine was an SSN. That is the number that served as a starting point for

analyzing the following data.

Figure 2 shows the logrithmic chart that was used in the experiment on

Bayesian procedures described above. The line at prior odds of 3:1 indicated

on the left horizontal axis and the prior probability of .75 shown on the

right horizontal axis indicates the starting point derived above.

The first datum is that another submarine was sighted on a homeward-

bound course. For some weel-considered reasons, this datum slightly

favors the hypothesis that the submarine being observed is an SSN; there is

an estimated probability of .55 that this submarine would have been homeward -

bound in about this time interval if the submarine being observed were an SSN;

there is a 50% probability estimate if this were an SS. Therefore the like-

lihood ratio of the first datum, that a homeward bound submarine was observed,

is .55/.50, which is equal to 1.1. This likelihood ratio is now inserted into

the log odds chart as shown in Figure 3. It increases the odds in favor of an

SSN by an almost imperceptible amount.
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The second datum is that the submarine being observed seems to be

following a straight track rather than taking evasive action. Figure 4

illustrates the manner in which the likelihood ratio associated with the

straight track was elicited. This procedure also employed beta distributions.

The upper portion of the figure refers to the prior beta distributions, ig-.

noring historical frequencies of straight tracks. The left-hand function is

the second order probability distribution over the proportion of straight

tracks given an SSN as estimated by the analyst. The analyst expected that

many more of the SSN, would follow straight tracks rather than evasive tracks.
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The upper right-hand graph refers to the second order probability distribution for

straight track given the second hypothesis, an SS. This is a uniform dis-

tribution. The middle portion of the figure shows the historical frequencies.

All five SSNs previously observed had followed a straight track, whereas the

one SS did not. Addition of these frequencies to the parameters of the beta

distributions shown at the top of the figure imply the beta distributions shown

at the bottom of the figure. The resulting likelihood ratio associated with

datum 2 is therefore .90, the expectation of the bottom left-hand distribution,

divided by .33. This likelihood ratio, 2.7, is now added to the log-odds chart

as illustrated in Figure S. The observation that the submarine is moving in

a straight track has boosted the odds in favor of an SSN to approximately

9 to 1. This second datum is a very strong one, indeed.

30:1 • 5 0.968

2

"• ,1 - 1 g -- 0.909

. 5!1 -0.833
2

3,1 0.750

Figure 5
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'The analysis of the third datum is displayed in Figure b. A political

event that was expected to be observed was not observed. A conditional

probability tree has been used to estimate the likelihood ratio. The

left-hand branch of the tree refers to the two hypotheses, the SSN versus

the SS. The next branch refers to the probability that the expected event

DATUM 3 = EXPECTED POUTICAL EVENT NOT OBSERVED

TRUE HYPOTHESIS EVENT EVENT OBSERVEO

No.

its C001

I
NO 0

" "Es 100N 0.40 020
• 40to o--'

Figure 6.

would occur given each of the hypotheses. The analysts estimated that

the event was certain to occur if they were observing an SSN, but the

probability was only .50 that it would occur given Sn SS. The third

column of branches refers to the probability of observing the event if

it occurs. The analysts reviewed some experimental literature and

concluded that there was a 60% chance that they would observe the event
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if it actually occurred, but it was certain that they would not observe

the event if it did not occur. That is, there was no chance of a false

alarm. These branch probabilities implied the path probabilities displayed

in the boxes at the right-hand side of the tree. Each probability was calculated

by taking the product of the component branch probabilities. Thus, the

.60 in the top branch is equal to 1.0 times .6. It is now a simple matter

to find the likelihood ratio. The probability of no" observing the expected

event given as SSN is equal to .40 (the probability of observing it if it

occurs, plus zero, the probability of observing it if it doesn't occur).

The probability of not observing the expected event given an SS is eq4al

to .70, so the resulting likelihood ratio is 1/1.75.

This likelihood ratio of 1/1.75 associated with not observing an

expected event is now drawn on the log odds chart in Figure 7.

"- 0"..- 0
ft z

30:1 5 I - • 0.968

ZI0 0 u •0.909

5:1 - 0.833

3:1 , 0.750
t I ' .

10.500

Figure 7.
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It drops the odds in favor of an SSN to approximately 5 to 1.

The fourth datum is that there has been no contact with the

submarine for an extended period of time. The analysts estimated a

probability of 90% for an extended lack of contact with an SSN, but

a probability of only 20% of no contact with the SS. Accordingly, the

likelihood ratio associated with the fourth datum is .9/.2 or 4.5. This

likelihood ratio is now added to the log odds chart as shown in Eigure 8.

.1 d 0

z/ Z

30:1 0.968

.100 0.909

0 Z
X. 5:, 0.833

3;1 -0.750

0.500

Figure 8.

It raises the odds in favor of the SSN to about 25 to 1.

The fifth datum later turned out to be a false alarm. An event

has begun to develop and the analysts concluded that if it continued to

develop it would favor the hypothesis that the submarine was an SS. The

effect of this datum is displayed on the log odds chart in Figure 9.
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Several attempts yielded no appropriate procedure for decomposing the

estimate of the likelihood ratio associated with this particular event.

0o

300 0.968

P0: 01 U-- , -
00.909

: 5:1 -0.833

0.750

IW 0.500

Figure 9.

Therefore, the analysts simply moved the odds on the log-odds chart on

an intuitive basis. After considerable discussion, they decided that

if the event did not turn out to be a false alarm, it favored the SS. It was

somewhat more diagnostic than the datum of not observing the expected

political event, and not quite as diagnostic as the straight track. They

therefore moved the log-odds down just slightly less than they had moved

it up as a function of the straight track. The resulting likelihood

ratio turned out to be 2.3. The next morning, after completing this

analysis, the final datum was identified as a false alarm and the odds

estimates were therefore returned to about 25 to 1 as is shown in Figure

10. Some weeks later, after receiving much more information, it was
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concluded that this submarine was indeed an SSN. It is interesting

to note that four of the analysts had discussed the problem thoroughly

throughout the day and remained both uncertain and divided about which of

the two hypotheses was correct. Yet the two analysts who made the estimates f
for this problem agreed with the final conclusion, that the data very strongly

favored the hypothesis that they were observing an SSN.

We have now conducted several other case studies similar to the one

described here. In general, the results have been encouraging with respect

to the operational feasibility of techniques that are currently being

developed for eliciting probability estimates and for revising those

probability estimates in the light of new information. But these case

studies have also highlighted some weaknesses of the laboratory procedures.

Because of this usefulness, we intend to increase the field research with

the intelligence analysts at OP 942U during the next contract year.
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